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Dynamic TOPSIS fuzzy cerebellar model
articulation controller for magnetic
levitation system
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Abstract. This study proposes a fuzzy Cerebellar Model Articulation Controller (CMAC) using a dynamic Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS) technique for dealing with the metallic sphere position control
of a magnetic levitation system (MLS). The proposed Dynamic TOPSIS Fuzzy CMAC (DTFCMAC) incorporates a multi-
criteria decision analysis with a fuzzy structure to decrease the computational load for parameter learning and to enhance the
fuzzy reasoning inference for a CMAC. The Shannon entropy index is used to derive the objective weights for the evaluation
criterion. By combining entropy weight and TOPSIS, the optimal threshold value for suitable firing nodes is determined
automatically and easily. In the proposed method, the dynamic back-propagation algorithm is applied to train the proposed
DTFCMAC online. Moreover, to guarantee the convergence of output tracking error for periodic command tracking, analytical
methods developed from a discrete-type Lyapunov function are used to determine the optimal learning-rate parameters for the
proposed DTFCMAC. The proposed DTFCMAC is applied to the MLS, and its performance is verified through simulations
and experiments. Our findings indicate that the proposed DTFCMAC control system achieves stability and desired control
performance for the MLS.

Keywords: Dynamic, TOPSIS, entropy, fuzzy inference system, cerebellar model articulation controller, and magnetic
levitation system

1. Introduction

The magnetic levitation system (MLS) produces
magnetic force using the electric current flowing
through a coil. This technique is used to suspend
an object in the air without incurring mechanical
contact, friction or noise and can be used for pre-
cise positioning. Because of these advantages, it has
many applications, such as for maglev trains, mag-
netic bearings, wind tunnels, and conveyor systems.
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Chung-Li, Taoyuan, 320 Taiwan, R.O.C. Tel.: +886 3 4638800
2209; Fax: +886 3 4536022; E-mail: cml@saturn.yzu.edu.tw.

With the rapid development of industrial technology,
MLSs have become increasingly widespread. How to
design a simple and effective control algorithm is an
important issue of MLSs, which has attracted much
research interest.

Over a decade, many new control methods have
been proposed for MLSs. In 2006, Chiang et al. pro-
posed the concept of integral variable structure grey
control [1]. Yang et al. [2] published the method
of adaptive robust output feedback control [2] and
a robust nonlinear output feedback control in 2009
[3]. In addition, a robust dynamic sliding mode
controller using adaptive recurrent neural network
was recommended by Lin et al. [4]. Then in 2011,
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Lin et al. offered an adaptive PID controller [5].
Three years later, Lin et al. introduced a function-
link cerebellar model articulation controller (CMAC)
[6]. Complementing these control methods, Lin et al.
[7] proposed a Dynamic Petri Fuzzy CMAC (DPFC-
MAC) [7]. However, these controllers have some
drawbacks. They are difficult to explain and sensitive
to the training data, and require complex computa-
tion for better control performance. In DPFCMAC
introduced by Lin et al. [7], the threshold value of
receptive-field basis function in association memory
space is between 0 and 0.2 so the values of receptive-
field basis function in association memory space must
have a value that is larger than the threshold value.
Lin et al. [7] demonstrated that if this threshold value
is small, the tracking error is large. A more detail
of this threshold value is presented in the following
section.

Various Multi-Criteria-Decision-Making
(MCDM) approaches have been developed and
applied to solve many problems [8–10]. As one
of the well-known classical MCDM approaches,
TOPSIS (technique for order preference by similar-
ity to ideal solution) method was firstly developed
by Hwang and Yoon [11]. For TOPSIS, the most
preferred alternative must have the shortest distance
from the positive ideal solution and the farthest
distance from the negative ideal solution. In this
work, the TOPSIS method involves the following
seven steps: (1) create an evaluation matrix, (2)
normalize the decision matrix, (3) compute the
weighted normalized decision matrix, (4) determine
the worst alternative (A′) and the best alternative
(A∗), (5) calculate the separations of an alternative
from A∗ and A′, (6) calculate the threshold index
(i.e., the relative proximity of an alternative to
A∗), and (7) select the optimal threshold index to
obtain the appropriate values of criteria. Generally,
the advantages of TOPSIS include: (a) simple and
logically understandable model, (b) respectable
computational efficiency and (c) the ability to com-
pute the relative performance for each alternative in
a simple mathematical form.

A cerebellar model articulation controller (CMAC)
is classified as a non-fully connected perceptron-
like associative memory network with overlapping
receptive fields [12]. It serves to resolve the fast
size-growing problem and the learning difficulty in
currently available types of neural networks (NNs).
In recent decades, CMAC has many advantages more
than NNs [13]. CMACs have been widely applied for
the control of complex dynamic systems because they

allow simple computation and have good generaliza-
tion capability and fast learning properties [14, 15].
Because of these advantages, this study incorporates
a TOPSIS with a fuzzy CMAC into a novel Dynamic
TOPSIS Fuzzy CMAC (DTFCMAC) to determine
suitable firing nodes, based on threshold values. In
recent years, to achieve better learning performance
for CMACs, Petri net has been used to construct a
DPFCMAC [7]. However, the threshold value is cho-
sen between 0 and 0.2 through trial-and-error. In this
study, a TOPSIS is combined with entropy method to
determine the threshold value automatically. Because
the TOPSIS transition space filters unimportant input
variables, it alleviates the computational burden that
accompanies the learning of parameters and increases
the number of fuzzy reasoning inference of a multi-
input CMAC. The proposed DTFCMAC combines
the advantages of CMAC, fuzzy system and TOPSIS.
In this study, the proposed DTFCMAC is applied to
control an MLS. Simulation and experimental results
of the MLS are presented to confirm the validity of
the proposed control strategy.

Notations: �mi×nj defines all real matrices with
dimension mi × nj . “*” and “′” represent the opti-
mal term and worst term, respectively. mijk, vijk,
and fijk are a mean parameter, a variance parameter
and a value of receptive-field basis function with the
i-th input, the j-th layer and the k-th block, respec-
tively. In addition, F is an evaluation matrix, eny is
an entropy index of criterion ny, ddny is the degree
of diversification of the measurement quality, wny is
the objective weight for each attribute, CC∗

mx
is the

optimal value of the relative closeness to the ideal
solution, bth is the dynamic threshold for selecting
appropriate firing rules, and μijk is the suitable firing
value in the TOPSIS transition space. γw, γm, andγv

are the learning-rate parameters of the weight, the
mean, and the variance of the Gaussian function,
respectively. λ0 is the error term.

2. Description of magnetic levitation system

2.1. Magnetic levitation system for experiment

The magnetic levitation system (MLS) is nonlinear
and unstable, and it is sensitive to initial conditions
and noises [5]. The system is divided into two parts:
the peripheral circuit and the MLS, as shown in Fig. 1.
The proposed DTFCMAC is implemented with the
PCI-1716 multi-function card, which has 250 kS/s,
16-bit, 16-ch, an onboard 1K sample FIFO buffer for



C.-M. Lin and T.-T. Huynh / Dynamic TOPSIS fuzzy cerebellar model articulation controller for MLS 2467

Fig. 1. Hardware experimental environment.

Fig. 2. The construction of magnetic levitation system [5].

A/D, 6 single-ended or 8 differential or a combination
of analog inputs, 16-bit A/D converter, with up to 250
kHz sampling rate, 2 analog output channels, 16-ch
digital input, and 16-ch digital output.

2.2. Modeling of magnetic levitation system for
simulation [4–6]

Figure 2 shows a single-axis MLS. The control
input is a voltage, which is converted into a current
through the current driver. When current flows, the
electromagnet creates a corresponding magnetic field
in its surroundings. The metallic sphere moves along
the vertical axis of the electromagnet. The position of
the metallic sphere is measured by an infrared sensor.

According to Newton’s second law of motion, the
behavior of the metallic sphere is specified by the
following equation:

Ma = F (x, I) − Mgm, (1)

where M(kg) is the mass of the metallic sphere,
gm(m/s2) denotes the acceleration due to gravity,
a(m/s2) is the acceleration, x(m) is the distance of

the sphere from the electromagnet, I(A) is the current,
and F (x, I)(N) is the magnetic control force.

The magnetic control force of MLS in an (x − I)
equation is expressed as:

F (x, I) = μ0N
4I2S

8[
(x + l) ln

∣∣∣∣∣R2 +
√

R2
2+(x + h)2

R1+
√

R2
1 + (x + h)2

∣∣∣∣∣+x ln

∣∣∣∣∣R1+
√

R2
1 + x2

R2+
√

R2
2 + x2

∣∣∣∣∣
]2

,

(2)

where μ0(Wb/Am) is the permeability of free space,
h(m) is the length of coil, N is the number of turns
per meter, S(m2) is the material surface crossed by
the magnetic flux, R1(m) is the minimum coil radius,
and R2(m) is the maximum coil radius.

Equations (1 and 2) are used for simulation only
in this work. During the design and practical imple-
mentation of the proposed controller, these equations
are not required.

3. TOPSIS method and structure of the
proposed DTFCMAC

The system dynamics of an MLS is intricate and
highly nonlinear; hence, it is difficult to design a suit-
able control scheme without mathematical dynamic
modeling for achieving highly precise position con-
trol. Thus, the proposed DTFCMAC is used, which
incorporates the TOPSIS method and the fuzzy infer-
ence system with a CMAC. The structure of the
proposed DTFCMAC is presented as follows:

3.1. Dynamic TOPSIS fuzzy cerebellar model
articulation controller

This work proposes a novel DTFCMAC as shown
in Fig. 3. This proposed DTFCMAC uses the follow-
ing fuzzy inference rules:

Rl : If I1 is f1jk, I2 is f2jk, . . . , and Ini
is fnijk, then

ojk = wjk for j = 1, 2, . . . , nj, k = 1, 2, . . . , nk,

and l = 1, 2, . . . , nl,

(3)

where ni is the input dimension, nj is the number of lay-
ers for each input dimension, nk is the number of blocks
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for each layer, nl is the number of fuzzy rules, fijk is the
fuzzy set for the i-th input, j-th layer and k-th block, and
wjk is a singleton output weight in the consequent part.
A schematic diagram for a two-dimensional (ni = 2)
DTFCMAC with four layers (nj = 4), with three blocks
(nk = 3) in each layer, is described in Fig. 4.

A DTFCMAC comprises an input space, an asso-
ciation memory space, a TOPSIS transition space, a
receptive field space, a weight memory space and an
output space. The signal propagation in each space is
described as follows:

1) Input: Set a vector I = [I1, . . . , Ii, . . . , Ini
]T ∈

�ni , each input state variable Ii is quantized into discrete
regions (called elements or neurons) according to the
specific control space. The number of elements ne is
termed as a resolution; for example, ne = 9 in Fig. 4.

2) Association Memory Space (Membership Func-
tion): Several elements are accumulated as a block. In
this space, each block performs a receptive-field basis
function. The Gaussian function is used as a receptive-
field basic function, which is represented as:

fijk(Fijk) = exp(−F 2
ijk),

for i = 1, 2, . . . , ni, j = 1, 2, . . . , nj,

and k = 1, 2, . . . , nk,

(4)

where Fijk = Ii − mijk

vijk

,

mijk is a mean parameter, and vijk is a variance param-
eter.

3) TOPSIS Transition Space: TOPSIS is a multi-
criteria decision analysis method, that was firstly
developed by Hwang and Yoon in 1981 [11], this method
was improved by Hwang et al. in 1993 [16]. The main
technique of TOPSIS method has been presented in [11,
17]. In this space, TOPSIS method is used to determine
the optimal threshold value for suitable firing nodes.
In addition, the entropy method is used to derive the
weights for the evaluation criteria. All the steps of TOP-
SIS are described in detail as following:

Table 1 includes all of the values for the receptive-
field basis function in association memory space. Let
A1, A2, . . . , Am be the alternatives and C1, C2, . . . , Cn

be the criteria. Alternatives are the layers and crite-
rion is the receptive-field basis function fijk or a block
in the CMAC of the proposed control system. Each
alternative has nk blocks. Each block has a specific
value fijk and each of these values is calculated in
Equation (4).

i. Create an evaluation matrix:
Set the matrix F = (fijk)(m×n) = (qmxny

)(m×n),

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f111 f112 f113 . . . f11nk

f121 f122 f123 . . . f12nk

f131 f132 f133 . . . f13nk

f141 f142 f143 . . . f14nk

f211 f212 f213 . . . f21nk

f221 f222 f223 . . . f22nk

f231 f232 f233 . . . f23nk

f241 f242 f243 . . . f24nk

...
...

... . . .
...

fij1 fij2 fij3 . . . fijnk

...
...

... . . .
...

fninjn1 fninjn2 fninjnk
. . . fninjnk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q11 q12 q13 . . . q1ny
. . . q1n

q21 q22 q23 . . . q2ny
. . . q2n

q31 q32 q33 . . . q3ny
. . . q3n

q41 q42 q43 . . . q4ny
. . . q4n

q51 q52 q53 . . . q5ny
. . . q5n

q61 q62 q63 . . . q6ny
. . . q6n

q71 q72 q73 . . . q7ny
. . . q7n

q81 q82 q83 . . . q8ny
. . . q8n

...
...

...
... . . .

...

qmx1 qmx2 qmx3 . . . qmxny
. . . qmxn

...
...

...
... . . .

...

qm1 qm2 qm3 . . . qmny
. . . qmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where m is the number of alternatives and n is the num-
ber of criteria, i = 1, 2, . . . , ni, j = 1, 2, . . . , nj , and
k = 1, 2, . . . , nk.

In this study, the number of inputs, the number of
layers and the number of blocks are ni = 2, nj = 4 and
nk = 3, respectively. Therefore, the proposed DTFC-
MAC has eight layers in total and each layer has three
blocks; thus in this case, the matrix F has eight alter-
natives (m = 8) and each alternative has three criteria
(n = 3).
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Fig. 3. Architecture of the proposed DTFCMAC.

The alternatives and criteria in matrix F are expressed
as:

A1 = [ q11 q12 q13 ];

A2 = [ q21 q22 q23 ]

A3 = [ q31 q32 q33 ]

A4 = [ q41 q42 q43 ]

A5 = [ q51 q52 q53 ]

A6 = [ q61 q62 q63 ]

A7 = [ q71 q72 q73 ]

A8 = [ q81 q82 q83 ]

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q11

q21

q31

q41

q51

q61

q71

q81

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q12

q22

q32

q42

q52

q62

q72

q82

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q13

q23

q33

q43

q53

q63

q73

q83

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

ii. The matrix F = Qmxny
is then normalized

If the value of matrix F has different dimensions,
it must be normalized. This implies that all the values

of Qmxny
are between 0 and 1.

Qmxny
= qmxny√∑mx=m

mx=1 q2
mxny

, for mx = 1, . . . , m,

and ny = 1, . . . , n (7)

• qmxny
is a quality value at criterion ny for alternative

mx of input Ii.

•
√∑mx=m

mx=1 q2
mxny

is the summation of all quality val-

ues qmxny
at criterion ny for all alternatives mx of

input Ii.
• Qmxny

is the measurement quality value. It is the
ratio of quality value qmxny

to the sum of all quality
values.

iii. Calculate the weighted normalized decision
matrix:

vmxny
= (

wny
Qmxny

)
m×n

for mx = 1, . . . , m, and ny = 1, . . . , n,
(8)

∑n

ny=1 wny
= 1 and 0 < wny

< 1. (9)

Determination of the Evaluation Criteria Weights
Shannon has proposed the entropy concept, which has

been highlighted by Zeleny, for deciding the objective
weights of criteria [18, 19]. In this study, the Shannon
entropy method is used to derive the weights for the
evaluation criteria. An entropy can be defined as [18,
19]

H(x1, x2, . . . , xnk
) = −

∑nx

i=1
xi log(xi). (10)
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Fig. 4. The organization of a 2-D fuzzy CMAC.

Table 1
Decision table in the TOPSIS method

Alternatives Am Layers Criteria Cn Values of criteria

Alternative 1 Layer 1

nk blocks︷ ︸︸ ︷
A1, A2, A3, . . . , Ank

f111f112f113 . . . f11nk

Alternative 2 Layer 2 B1, B2, B3, . . . , Bnk
f121f122f123 . . . f12nk

Alternative 3 Layer 3 C1, C2, C3, . . . , Cnk
f131f132f133 . . . f13nk

Alternative 4 Layer 4 D1, D2, D3, . . . , Dnk
f141f142f143 . . . f14nk

Alternative 5 Layer 5 a1, a2, a3, . . . , ank
f211f212f213 . . . f21nk

Alternative 6 Layer 6 b1, b2, b3, . . . , bnk
f221f222f223 . . . f22nk

Alternative 7 Layer 7 c1, c2, c3, . . . , cnk
f231f232f233 . . . f23nk

Alternative 8 Layer 8 d1, d2, d3, . . . , dnk
f241f242f243 . . . f24nk

...
...

...
...

Alternative mx Layer mx x1, x2, x3, . . . , xnk
fij1fij2fij3 . . . fijnk

...
...

...
...

Alternative m Layer m z1z2z3 . . . znk
fninj1fninj2fninj3 . . . fninjnk

where xi (i = 1, 2, . . . , nx) are the probabilities of ran-
dom variable being computed from a probability mass
function X. Entropy is a measurement of the degree of
disorder in a system. The entropy value eny

of criterion
ny is defined as

eny
= − 1

ln(m)

∑m

mx=1 Qmxny
ln

(
Qmxny

)
,

for mx = 1, . . . , m, and ny = 1, . . . , n,
(11)

where eny
∈ [0, 1], eny

is an entropy index of criterion
ny, which is a sum of all measurement quality values
Qmxny

at criterion ny for all alternatives, and the constant

k = 1
ln(m) is used to guarantee 0 ≤ eny

≤ 1.

For a given criterion ny, the larger the diversification of
Qmxny

becomes, the smaller eny
is; this means the more

important is the role that is played by criterion ny in the
comparison. Therefore, set

ddny
= 1 − eny

, ny ∈ [1, n], (12)

where ddny
is the degree of diversification of the mea-

surement quality, and the larger ddny
is, the more

important the criterion is.
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The objective weight for each criterion is calculated
as:

wny
= ddny

n∑
ny=1

ddny

, (13)

and it is viewed as the degree of importance for criterion
ny.

Finally, by following these steps, the entropy weight
vector W = [w1, w2, . . . , wny

, . . . , wn] is obtained.

iv. Determine the worst alternative (A
′
) and the best

alternative (A*):
This step determines A∗ and A

′

A∗ =
{

v∗
1, . . . , v

∗
ny

, . . . , v∗
n

}
, (14)

where

vny
∗=

{
max(vmxny

) if ny ∈ J̄
∗
; min(vmxny

) if ny ∈ J−
′
}
.

A
′ = {v1′ , . . . , v

′
ny

, . . . , vn
′ }, (15)

where

vny
′ = {min(vmxny

) if ny ∈ J̄
∗
; max(vmxny

) if ny ∈ J−
′}.

J̄
∗

is a set of positive criteria or positive impacts.
J−

′ is a set of negative criteria or negative impacts.

v. Calculate the separation distance for each alterna-
tive:

The separation from the best alternative is:

Smx
∗ =

√√√√ n∑
ny=1

(
vny

∗ − vmxny

)2

for mx = 1, . . . , m, and ny = 1, . . . , n, (16)

Similarly, the separation from the worst alternative is:

S
′
mx

=
√

n∑
ny=1

(
v

′
ny

− vmxny

)2

for mx = 1, . . . , m, and ny = 1, . . . , n,

(17)

vi. Calculate the relative closeness to the ideal solu-
tion CC∗

mx
:

CC∗
mx

= S
′
mx(

S∗
mx

+ S′
mx

) , 0 < CC∗
mx

< 1, (18)

where CC∗
mk

= [
CC∗

1, CC∗
2, . . . , CC∗

mk
, . . . , CC∗

m

]
.

CC∗
mx

= 1 if and only if the alternative solution has
the best condition.

CC∗
mx

= 0 if and only if the alternative solution has
the worst condition.

This step is to find the optimal value of CC∗
mx

, which
is also the threshold value of fijk for selecting the suit-
able firing rule.

In this study, the threshold values are calculated as:

bth = max(CC∗
mk

) (19)

Particularly, if the threshold value is set manually
to obtain the fuzzy rules, the proposed DTFCMAC
becomes:

1. If the threshold value bth = 0 is set, the pro-
posed DTFCMAC is the same as the FCMAC [20]
because all the rules are fired at this case.

2. If the threshold value bth = βc is set, the proposed
DTFCMAC is the same as the DPFCMAC [7].

vii. Select the best value of μijk:
The optimal threshold value for selecting a suitable

firing node is expressed as:

μijk =
{

fijk, fijk � bth

0, fijk < bth,
(20)

whereμijk is the suitable firing value andbth is a dynamic
threshold value.

If the values of the receptive-field basis function in
association memory space are larger than the threshold
value, the fuzzy rules are fired and their values are unal-
tered. Otherwise, the fuzzy rules are not activated and
their values are set to zero. Equation (20) is applied to
calculate the multi-dimensional receptive-field function
presented in Equation (21) and the error term in Section
4.2.

4) Receptive-field space (hypercube space): The
multi-dimensional receptive-field function is deter-
mined as:

rjk =
ni∏

i=1
μijk =

ni∏
i=1

fijk(Fijk) =
ni∏

i=1
exp

[
−

(
Ii−mijk

vijk

)2
]

(21)
for i=1, 2, . . . , ni, j=1, 2,. . ., nj and k=1, 2, . . . , nk,

where rjk is associated with the j th layer and the kth
block.
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The multi-dimensional receptive-field functions are
expressed in vector form as:

r = [r11 . . . r1nk
, r21 . . . r2nk

, rnj1 . . . rnjnk
]T ∈ �njnk

= [r1, . . . , rl, . . . , rnl
]T ∈ �nl .

(22)
5) Weight memory: Each location for the receptive-

field to a particular adjustable value in the weight
memory space is expressed as:

w= [w11 . . . w1nk
, w21 . . . w2nk

, wnj1 . . . wnjnk
]T ∈�njnk

= [w1, . . . , wl, . . . wnl
]T ∈ �nl ,

(23)
where wjk denotes the connecting weight value for the
output that is associated with the jth layer and kth block.

6) Output: The output for the proposed DTFCMAC
is the algebraic sum of the activated weighted receptive-
field, and is expressed as:

uDTFCMAC = o = wT r =
nj∑

j=1

nk∑
k=1

wjkrjk =
nl∑

l=1

wlrl.

(24)

4. The DTFCMAC control system for MLS

4.1. The DTFCMAC-based feedback control
system

This section introduces the proposed DTFCMAC
control system for effective control of the sphere posi-
tion of an MLS. The block diagram of the proposed
DTFCMAC control system for the MLS is depicted in
Fig. 5, where xd is the reference signal and x is the
tracking output signal of the MLS. The inputs of the
proposed DTFCMAC control system are the tracking
error e(K) = xd(K) − x(K) and the derivative of track-
ing error �e(K) = e(K + 1) − e(K), and the output of
the proposed DTFCMAC control system is uDTFCMAC.
The newly designed DTFCMAC structure is described
in Fig. 3, with the TOPSIS transition layer being the
most important difference between the FCMAC and the
proposed DTFCMAC.

4.2. Online learning algorithm

In this study, to point out the online learning
algorithm of the proposed DTFCMAC, we use the super-
vised gradient descent method. The energy function E

is defined as:

Fig. 5. Block diagram of DTFCMAC control system.

E = 1

2
(xd − x)2 = 1

2
e2. (25)

With the energy function E, the error term to be prop-
agated is specified by:

λ0 =− ∂E

∂uDTFCMAC

= ∂E

∂e

∂e

∂x

∂x

∂uDTFCMAC

=e
∂x

∂uDTFCMAC

,

(26)

and the updated weight is derived using the following
equation:

�wl = −γw

∂E

∂wl

= −γw

∂E

∂uDTFCMAC

∂uDTFCMAC

∂wl

= γwλ0rl,

(27)

where γw is a learning-rate parameter for all wl. The con-
nective weights are updated according to the following
equation:

wl(K + 1) = wl(K) + �wl(K), (28)

where K denotes the number of iterations. When the
weights in the rule layer are unified, the error term is
calculated and propagated by the following equation:

ξl = ∂E

∂rl
=
[
− ∂E

∂uDTFCMAC

](
∂uDTFCMAC

∂rl

)
=

{
λ0wl, rl /= 0

0, rl = 0.

(29)

In TOPSIS layer, the error term is calculated as the
following equation, and based on the Equation (20), it
is obtained as:

ρijk = − ∂E
∂fijk

=
[
− ∂E

∂uDTFCMAC

∂uDTFCMAC

∂rl

](
∂rl

∂fijk

)
=

{
ξlrl = λ0wlrl, μijk = fijk, fijk � bth

0, μijk = 0, fijk < bth.

(30)
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Fig. 6. Simulation results of the PID controller (a) Sinusoidal command and (b) Trapezoid command.

The updation laws of mijk and vijk are denoted as:

�mijk =−γm
∂E

∂mijk
= γm

[
− ∂E

∂uDTFCMAC

∂uDTFCMAC

∂fijk

](
∂fijk

∂mijk

)
,

= γmρijk
2(Ii−mijk)

v2
ijk

(31)

�vijk = −γv
∂E
∂vijk

= γv

[
− ∂E

∂uDTFCMAC

∂uDTFCMAC

∂fijk

](
∂fijk

∂vijk

)
,

= γvρijk
2(Ii−mijk)2

v3
ijk

(32)
where γm and γv are the learning-rate parameters of
the mean and the variance of the Gaussian function,

respectively. The mean and variance are updated as
follows:

mijk(K + 1) = mijk(K) + �mijk(K), (33)

vijk(K + 1) = vijk(K) + �vijk(K). (34)

If the plant model is obtainable, then the Jacobian
of the system ∂x/∂uDTFCMAC can be calculated. If the
plant model is unknown, then ∂x/∂uDTFCMAC cannot be
obtained. Though an intelligent identifier can be applied
to identify the system model [21], but heavy computa-
tion exertion certainly occurs. In this work, we used a
simple approximation of propagation error term as [22]:

λ0
∼= �e(K) + e(K). (35)
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Fig. 7. Simulation results of the DPFCMAC (a) Sinusoidal command and (b) Trapezoid command.

4.3. Stable convergence analyses

The learning laws in (27), (31) and (32) require
the appropriate selection of the learning rates
γw, γm, and γv, respectively. If the learning rates are
set too small, the parameters for the proposed DTFC-
MAC control system can converge easily. However, it
decreases the learning efficiency. On the contrary, if
large values are given for the learning rates, the learn-
ing speed is fast. Nevertheless, the proposed control
system becomes more unstable when the parameters

cannot converge quickly. In this study, the convergence
analysis is derived to specify the learning rates to assure
convergence of the tracking error.

Theorem 1. Set γz is the learning rate for the pro-
posed DTFCMAC control system and define Tz(K) =
∂uDTFCMAC

∂z
, for z = w, m, and v. Then the convergence

of tracking error is guaranteed if γz is selected as:

0 < γz <
2

||Tz(K)||2
[

λ0
e(K)

]2 (36)
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Fig. 8. Simulation results of the proposed DTFCMAC (a) Sinusoidal command and (b) Trapezoid command.

where ‖·‖ is the Euclidean norm. Moreover, the vari-
able optimal learning rates which achieve the fastest
convergence are obtained as:

r∗
z = 1

‖Tz(K)‖2
[

λ0
e(K)

]2 (37)

Proof. Since Tz(K) = ∂uDTFCMAC

∂z
for z = w, m and v.

Tw(K), Tm(K) and Tv(K) are calculated as follows:

Tw(K) = ∂uDTFCMAC

∂w
=

[
∂uDTFCMAC

∂w1
, . . . ,

∂uDTFCMAC

∂wl

, . . . ,
∂uDTFCMAC

∂wni

]T

,

(38)

Tm(K) = ∂uDTFCMAC

∂m
=[(

∂uDTFCMAC

∂m1jk

)T

, . . . ,

(
∂uDTFCMAC

∂mijk

)T

, . . . ,

(
∂uDTFCMAC

∂mnijk

)T
]T

,

(39)
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Fig. 9. Experiment results of PID controller (a) Sinusoidal command and (b) Trapezoid command.

where

∂uDTFCMAC

∂mnijk
=

[
∂uDTFCMAC

∂mni11
, . . . , ∂uDTFCMAC

∂mni1nk

, ∂uDTFCMAC

∂mni21
, . . .

. . . , ∂uDTFCMAC

∂mni2nk

, . . . , ∂uDTFCMAC

∂mninj1
, . . . , ∂uDTFCMAC

∂mninjnk

]T

,

(40)

Tv(K) = ∂uDTFCMAC

∂v
=[(

∂uDTFCMAC

∂v1jk

)T

, . . . ,

(
∂uDTFCMAC

∂vijk

)T

, . . . ,

(
∂uDTFCMAC

∂vnijk

)T
]T

,

(41)

where
∂uDTFCMAC

∂vnijk
=

[
∂uDTFMAC

∂vni11
, . . . , ∂uDTFMAC

∂vni1nk

, ∂uDTFMAC

∂vni21
, . . .

. . . , ∂uDTFCMAC

∂vni2nk

, . . . , ∂uDTFCMAC

∂vninj1
, . . . , ∂uDTFCMAC

∂vninjnk

]T

,

(42)

and

∂uDTFCMAC

∂w1
= r1,

∂uDTFCMAC

∂mijk
= wlrl

2(Ii−mijk)
v2

ijk

,

and ∂uDTFCMAC

∂v
= wlrl

2(Ii−mijk)2

v2
ijk

Define a Lyapunov function as:

V (K) = 1

2
e2(K). (43)

Then the change of the Lyapunov function is obtained
as:

�V (K)=V (K+1)−V (K)= 1

2

[
e2(K + 1) − e2(K)

]
.

(44)
The error difference is signified by:

e(K + 1) = e(K) + �e(K) = e(K) +
[

∂e(K)

∂z

]T

�z.

(45)
Using (26), yields

∂e

∂z
= ∂e

∂x

∂x

∂uDTFCMAC

∂uDTFCMAC

∂z
= − λ0

e(K)
Tz(K).

(46)
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Fig. 10. Experiment results of DPFCMAC (a) Sinusoidal command and (b) Trapezoid command.

Therefore,

e(K + 1) = e(K) −
[

λ0
e(N)Tz(K)

]T

γzλ0Tz(K).

= e(K)
[
1 − γz

(
λ0

e(N)

)
T T

z (K)Tz(K)
] (47)

From (44) and (47), �V (K) is represented as:

�V (K) = 1

2
γzλ

2
0 ‖Tz(K)‖2

[
γz

(
λ0

e(K)

)2

‖Tz(K)‖2 − 2

]
.

(48)

If γz is chosen as in (36), �V (K) in (48) is
less than zero, the Lyapunov stability of V (K) >

0 and �V (K) < 0 is guaranteed. Therefore, the conver-
gence of tracking error e(K) is guaranteed. Moreover,
the optimal learning rates which achieve the fastest con-
vergence correspond to:

2γ∗
z

[
λ0

e(K)

]2
‖Tz(K)‖2 − 2 = 0

γ∗
z = 1

‖Tz(K)‖2
[

λ0
e(K)

]2 ,
(49)

which come from the derivative of (48) with respect to
γz and equals zero. By using this learning-rate value
(49), the stable convergence of tracking error e(K) is
guaranteed as fast as possible.

5. Simulation and experimental results

5.1. Simulation results

The specifications of the MLS are as follows:

N =2850, r1 = 0.012(m), r2 =0.038(m), A = 0.005515(m2),

μ0 =4π.10−7(Wb/Am), M =0.0216(kg), and gm =9.8(m/s2).
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Fig. 11. Experiment results of the proposed DTFCMAC (a) Sinusoidal command and (b) Trapezoid command.

To compare the control efficiency, a conventional PID
controller, a DPFCMAC introduced by Lin et al. [7] and
the proposed DTFCMAC are used to control the MLS.
For the conventional PID controller, the PID gains are
KP = 5000, KI = 1000, and KD = 3. For the DPFC-
MAC, the parameters for calculating the threshold value
are chosen as a = 0.5 and β = 50. For both the pro-
posed DTFCMAC and DPFCMAC, the initial learning
rates are chosen as γw = 10, γm = 1 and γv = 0.1, and
then they are adjusted through (49). The initial position
of the metallic sphere is set at –1 mm. The MLS is con-
trolled to follow a sinusoidal command signal of sphere
displacement of 1 mm, as shown in Figs. 6(a)–8(a), and
a trapezoid command signal of sphere displacement of
1 mm, as shown in Figs. 6(b)–8(b).

The respective threshold values of the DPFCMAC
are 0.35 with sinusoidal command and 0.0545 with
trapezoid command. In the proposed DTFCMAC, the
threshold values are between 0.4864 and 0.5187 with

sinusoidal command, and between 0.4962 and 1 with
trapezoid command, respectively. The comparisons of
these simulation results are listed in Table 2. The
RMSE value for the proposed DTFCMAC is clearly
smaller than those for the PID controller and the DPFC-
MAC. In addition, the threshold values for the proposed
DTFCMAC control system are also obviously larger
than that for the DPFCMAC. The simulation results
show that the proposed DTFCMAC achieves the best
control performance with the smallest RMSE. In our
study, the computation time for each epoch of the
PID and DPFCMAC algorithms are 0.000075 second
and 0.00014 second, respectively; and the computa-
tion time for the proposed DTFCMAC algorithm is
0.00023 second. It shows that the proposed method
takes a little longer computation time than the other
methods, but it is acceptable. Therefore, the proposed
method can achieve better control performance by sac-
rificing a little longer computation time. The comparison
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Table 2
Comparison of simulation results in RMSE

Controller Computation Sinusoidal Threshold values for Trapezoid Threshold values for Degree of algorithm
time (s) command (mm) sinusoidal command command (mm) trapezoid command complexity

PID controller 0.000075 0.1179 0.1052 Simple
DPFCMAC 0.00014 0.0431 dth = 0.35 0.0321 dth = 0.0545 More complex than

the PID controller
DTFCMAC 0.00023 0.0238 dth ∈ [0.4864, 0.5187] 0.0187 dth ∈ [0.4962, 1] A little bit more

complex than the
DPFCMAC

Table 3
Comparison of experimental results in RMSE

Controller Sinusoidal Threshold values for Trapezoid Threshold values for
command (mm) sinusoidal command command (mm) trapezoid command

PID controller 0.1176 0.0831
DPFCMAC 0.2835 dth ∈ [0, 0.2] 0.2805 dth ∈ [0, 0.2]
DTFCMAC 0.01287 dth ∈ [0.4216, 0.5214] 0.01174 dth ∈ [0.4237, 1]

Table 4
The number of firing rules and the total number of CMAC parameters

Structure Number of firing rules for each state variable The total number of CMAC parameters

FCMAC [26] 36 (fixed) 84 (fixed)
DPFCMAC [7] Less than 36 Less than 84
DTFCMAC Less than DPFCMAC’s Less than DPFCMAC’s

of degree of algorithm complexity is also shown in
Table 2.

5.2. Experimental results

In this study, we use a practical experimental MLS,
which is shown in Fig. 1. To compare the control effi-
ciency, a conventional PID controller, a DPFCMAC
introduced by Lin et al. [7], and the proposed DTFC-
MAC are used to control the MLS. For the conventional
PID controller, the PID gains are KP = 4.4, KI =
2.46 and KD = 0.17. For the DPFCMAC, the param-
eters for calculating the threshold value are chosen
as a = 0.2 and β = 20. For the proposed DTFCMAC
control system, the initial learning rates are chosen as
γw = 0.01, γm = 0.001 and γv = 0.001, and then they
are adjusted through (49). The experimental results for a
sinusoidal command signal with initial control parame-
ters are shown in Figs. 9(a)–11(a), and those for a trape-
zoid command signal are shown in Figs. 9(b)–11(b).
From these experimental results, our findings indicate
that the proposed DTFCMAC control system controls
the MLS to follow the command signal well.

Moreover, the threshold values for the DPFCMAC
are between 0 and 0.2 with both sinusoidal command
and trapezoid command. In the proposed DTFCMAC,
the threshold values are between 0.4216 and 0.5214

with sinusoidal command, and between 0.4237 and 1
with trapezoid command, respectively. The compar-
isons of these experimental results with both sinusoidal
command signal and trapezoid command signal are
summarized in Table 3.

As seen, the RMSE values for the proposed DTFC-
MAC are obviously smaller than those for the PID
controller and the DPFCMAC. In addition, the threshold
values for the proposed controller are obviously larger
than that for the DPFCMAC, and the number of firing
rules and the total number of CMAC parameters are also
less than that for the DPFCMAC. In addition, the number
of firing rules and the total number of CMAC parame-
ters are shown in Table 4. According to the simulation
and the experimental results, highly accurate position
tracking responses are achieved by using the proposed
DTFCMAC. Compared with the other control systems,
chatter and transient tracking error are greatly reduced
by the proposed DTFCMAC control system.

6. Conclusion

In this paper, the proposed DTFCMAC control sys-
tem is successfully applied to control the position of the
metallic sphere in a magnetic levitation system. This
controller incorporates a TOPSIS with a fuzzy CMAC,
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to select suitable firing nodes. The TOPSIS is combined
with entropy method to determine the threshold values
automatically. This control system is designed without
hard computation, and possesses the advantages of the
CMAC, such as, reducing the computation burden of
parameter learning. According to the adaptive tuning
laws, good control performance is achieved by modify-
ing the control parameters to reduce the approximation
error. Furthermore, to guarantee the system stability,
a Lyapunov function is used to determine the optimal
learning-rate parameter. Finally, the proposed intelli-
gent DTFCMAC is implemented with the PCI-1716
multifunction card, to achieve the design goals of small
size, low cost, fast execution speed and high flexibility.
Both simulation and experimental results of the MLS
show that using the proposed controller can achieve
highly accurate position tracking responses. The pro-
posed control method is a viable alternative for the
control of non-linear systems to achieve better per-
formance. Therefore, the proposed control method is
suitable for this problem and is also applicable to other
unknown non-linear systems.
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